New Blog!

As of today we have a new blog!

All future posts will be on our new blog. We will no longer be using this blog except as a repository for all previous content, which the new blog will link back to as needed.

If you subscribed to this blog, you will need to re-subscribe on the new blog.


CITW 15: The Red Ear

Welcome back to another Clinical Image of the Week from the case files of the Brown EM Residency!

HPI/ROS: 5 year old female with a history of recurrent otitis media who presents to the ED with right ear pain. Per the parents, she developed acute onset right ear pain and “redness” one week ago that was associated with fevers (Tm 103.2). She saw her pediatrician who started a course of Augmentin for otitis media, however, after three days of no improvement, she received IM antibiotics (unknown type) with only minimal improvement in symptoms. On the day of ED presentation, her ear redness had worsened and she had developed limited range of motion of the head and neck. Associated symptoms included headache, hearing loss, and sore throat. No congestion, runny nose, conjunctivitis, visual changes, numbness, weakness, discoordination, cough, dyspnea, wheezing, abdominal pain, vomiting, diarrhea, or rash. No sick contacts or recent travel. Shots are up to date.

Vital Signs: T 102.3, HR 156, RR 22, BP 118/72, SpO2 99% on RA

Pertinent physical exam: Patient found sitting on her mother’s lap, not playful or interactive. Right TM is erythematous and bulging. There is edema and erythema noted behind the right auricle with tenderness to palpation. Shotty cervical chain adenopathy appreciated. No ear discharge. Left TM is clear. Oropharynx is clear with moist mucous membranes. No focal or gross neurological deficits. No meningismus. Neck is supple. Heart is tachycardic. Abdomen soft, non-tender. Lungs clear to auscultation. No rashes. No other pertinent exam findings.

CT imaging was obtained:

Mastoiditis 1
Image 1: CT brain, axial cuts in bone window.
Mastoiditis 2
Image 2: CT brain, coronal cuts in bone window.

What’s the diagnosis?

Continue reading

Atrial Fibrillation, You’re a Heart Breaker, Dream Maker, Love Taker:

But At Least There is Low Risk for Thromboembolic Events With Speedy Conversion to Sinus Rhythm…

This post reviews the article from Weigner, Marilyn et al. “Risk for Clinical Thromboembolism Associated with Conversion to Sinus Rhythm in Patients with Atrial Fibrillation Lasting Less Than 48 Hours,” from the Annals of Internal Medicine in 1997 as part of the ongoing 52 article series.

Main Points:

  1. This article reveals only a 0.8% risk of clinical thromboembolic event for patients who were clinically estimated to be in atrial fibrillation for less than 48 hours.
  1. This trial data supports the recommendation for early cardioversion, either pharmacologic or through electric cardioversion, in patients with recent onset of symptoms without the need for prior diagnostic imaging to evaluate for clot burden.


Atrial fibrillation is a common arrhythmia and responsible for over 250,000 hospital admissions annually. Patients often feel the effects of depressed cardiac output from the loss of atrial systole and seek medical attention in hopes of improved quality of life. Patients may describe a range of symptoms including palpitations, dyspnea, dizziness, angina and fatigue. Studies have demonstrated that patients with atrial fibrillation for more than two days may have a greater than five percent risk of clinical thromboembolism and often require weeks of anticoagulation or screening with transesophageal echocardiography prior to cardioversion. This study sought to answer the question of whether or not patients who experienced only a short duration of symptoms were low risk for thromboembolic disease.


This was a prospective study of consecutive patients at two academic medical centers, Beth Israel Deaconess Medical Center in Boston, MA and the John Dempsey Hospital and University of Connecticut Health Center in Farmington, CT. 1822 adult patients with a diagnosis of atrial fibrillation were screened and 375 patients who were clinically estimated to have symptoms for less than 48 hours were enrolled. Those patients whose duration of symptoms were unclear or had already initiated long term anticoagulation with warfarin were excluded. Patients with a previous history of thromboembolic events were not excluded, but one patient who had an acute thromboembolism was not enrolled in the trial. Clinical and transthoracic echocardiography data and outcomes were collected from review of the medical records. Clinical embolic events were considered if they occurred during the index hospitalization or within one month after conversion to sinus rhythm. Conditions that may have predisposed patients to atrial fibrillation included: previous history of atrial fibrillation (181 patients, 48.3%), hypertension (156, 41.7%), coronary artery disease (114, 30.4%), infection (25, 6.7%), history of thromboembolism (23, 6.1%), excessive alcohol use (22, 5.9%), rheumatic heart disease (7, 1.9%). Patients were noted to have left atrial dimensions of 4.2 +/- 0.7cm (normal ≤ 4.0cm) and a left atrial length of 5.7 +/- 0.7cm (normal ≤ 5.2cm) based on transthoracic echocardiogram data. 218 out of 280 patients who had echocardiograms performed were noted to have at least some evidence of mitral valve regurgitation with 61 patients noted to have either moderate or severe regurgitation.

Patients converted back to a normal sinus rhythm either spontaneously or through pharmacologic or electric cardioversion methods. Conversion was considered spontaneous if it occurred without the use of medications or electricity or in the setting of use of ventricular rate-controlling agents (digoxin, beta-blockers, and calcium channel blockers).

Three patients (0.8%, 95% CI 0.2-2.4) were noted to have a clinically significant thromboembolism and surprisingly all converted spontaneously. The cases included a left parietal embolic stroked in an 86 year old female with history of hypertension; a right proximal brachial artery embolus in an 83 year old female with coronary artery disease; and a transient ischemic attack in an 89 year old female with a recent diagnosis of pneumonia.

This study was a consecutive series that relied on both real time data gathering as well as retrospective chart review.

Level of Evidence:

This study was graded a level II based on the ACEP Clinical Policy Grading Scheme for prognostic questions and had only minimal methodological flaws.


The three patients in this trial were identified as having increased risk for thromboembolism based of the Stroke Prevention and Atrial Fibrillation Study I and II, however, how best to achieve post conversion anticoagulation in the era of direct oral anticoagulants remains a hot topic for further study and debate.

Relevant articles:

Mookadam, M. Shamoun FE. Mookadam, F. “Novel Anticoagulants in Atrial Fibrillation: A Primer for the Primary Physician.” J Am Board Fam Med, 2015, 28(4):510-22

Source Articles:

Weigner, M. Caulfield, T. Danias, P. et al. “Risk for Clinical Thromboembolism Associated with Conversion to Sinus Rhythm in Patients with Atrial Fibrillation Lasting Less Than 48 Hours.” Annals of Internal Medicine, 1997, (126):615-20.

Faculty Reviewer: Dr. Siket

Spare the Tube, Save a Life

This is part of a recurring series examining landmark articles in Emergency Medicine, in the style of ALiEM’s 52 Articles.


Brochard, L. Mancebo, J. Wtsocki, M. et al. “Noninvasive Ventilation for Acute Exacerbations of Chronic Obstructive Pulmonary Disease.” NEJM 1995, 333(13):817-22.

Main Points:

  1. In this randomized prospective multicenter trial of 85 patients admitted to ICUs throughout Europe with COPD exacerbations, noninvasive ventilation reduced the need for endotracheal intubation, length of stay and in-hospital mortality rate.
  1. 31 of the 42 patients in the standard arm required intubation, compared to 11 of 43 patients in the noninvasive arm (p<0.001). These results were consistent among the five centers studied. The mortality rate and length of stay was similar in the two groups in whom endotracheal intubation was required, suggesting that the benefits observed in noninvasive ventilation resulted from lower rates of intubation.
Figure 1. Mask used to deliver noninvasive ventilation

Figure 1. Mask used to deliver noninvasive ventilation


COPD exacerbations often manifest as acute hypercapnic ventilatory failure and endotracheal intubation can be a life-saving procedure. This intervention, however, is not without associated risks both during the time of the procedure as well as later in the course of the patient’s care. This patient population is at risk for hemodynamic compromise during intubation and may be difficult to manage on the ventilator due to a multitude of concerns including air trapping and tachypnea. The risk for ventilator associated pneumonia and other complications secondary to being intubated for prolonged periods of time are also worth considering.

Brochard and his colleagues investigated the use of noninvasive ventilation in COPD exacerbations in hopes of reducing mortality through the reduction of intubation. Thiswas a multicenter prospective randomized study that recruited patients in five European ICUs. The primary and secondary outcomes were patient-centered and this article from 1995 has clearly framed the manner in which we manage the sick COPD patient today. The medications used and manner in which noninvasive ventilation is employed has evolved since the publication and a comprehensive review of management was published in 2010 by the American Academy of Family Physicians. ACEP also has published clinical guidelines on use of noninvasive ventilation in 2010.


This prospective multicenter study enrolled 85 out of 275 patients admitted to the ICU with COPD or a high probability of the disease based on careful history, physical examination and chest x-ray. Patients were selected if they had a respiratory acidosis and elevated bicarbonate level. Additional criteria included dyspnea for less than two weeks and at least two of the following: respiratory rate >30 BPM, partial pressure of arterial O2 <45 mm Hg, arterial pH <7.35 after the patient was breathing room air for at least 10 minutes. The exclusion criteria included: respiratory rate <12 BPM, need for immediate intubation-defined by strict criteria in the paper, already intubated, use of sedative drugs in the past 12 hours, CNS disorder, cardiac arrest in the past five days, cardiogenic pulmonary edema, neuromuscular or skeletal disorder, upper airway obstruction or asthma, clear cause of decompensation requiring treatment, or facial deformity. Patients were either assigned to the standard arm which included treatment with: maximum of 5LPM O2 by nasal prongs with goal O2 saturation >90%, medications such as subcutaneous heparin, antibiotic agents and bronchodilators (subcutaneous terbutaline, aerosolized or intravenous albuterol, corticosteroids or intravenous aminophylline), correction of electrolytes. The noninvasive arm received the same medications with the addition of periods of noninvasive ventilation. The same apparatus was used at all five sites to deliver pressure support of 20 cm H20 with an expiratory pressure that was atmospheric. Patients underwent noninvasive ventilation for at least six hours a day with overall duration determined by clinical criteria and arterial blood gal levels.

In order to standardize care, the authors created major and minor criteria as objective markers for the need to perform endotracheal intubation. The major criteria included: respiratory arrest, respiratory failure with LOC or gasping for air, psychomotor agitation making nursing care impossible and requiring sedation, HR<50 BPM with loss of alertness, hemodynamic instability with SBP <70 mm Hg. There was a series of minor criteria also relating to vital sign instability, mental status changes or arterial pH <7.3. In both groups the presence of one major criterion was an indication for intubation. After the first hour of treatment the presence of two minor criteria was an indication for intubation.

Patients were evaluated at the one hour, three hour and 12 hour mark following the initiation of therapy. The primary outcome examined was the need for endotracheal intubation with secondary end points including length of stay, complications not present on admission (pneumonia, barotrauma, gastrointestinal hemorrhage, renal insufficiency, neurologic events and pulmonary embolism), duration of ventilatory assistance, and mortality rate during hospitalization. 31 of the 42 patients in the standard arm required intubation, compared to 11 of 43 patients in the noninvasive arm (p<0.001). Per the authors, these results were consistent among the five centers studied, however, examining table 2 sites one and two seemed to have high percentages of intubation, 100 and 83 percent respectively, compared to the others. This may be skewed by the overall low numbers studied. Patients who ultimately were intubated both in the standard and noninvasive arms had extended ventilation time with 17 +/- 21 days and 25 +/- 17 days respectively. Complications and events leading to death are shown in Table 4.

Level of Evidence:

This study was graded a level I based on the ACEP Clinical Policy Grading Scheme for therapeutic questions.


The use of pressure support of 20/0 is quite different from the manner in which many providers initiate noninvasive ventilation today. This may be secondary to the limitations of the technology at the time because the photograph in figure 1 (see above) displays a mask that appears different from what you find on modern machines.

Relevant articles:

Ahn, J. Pillow, T. “Focus On: Noninvasive Positive Pressure Ventilation in the Emergency Department.” 2010,—Practice-Management/Focus-On–Noninvasive-Positive-Pressure-Ventilation-In-the-Emergency-Department/

Evensen, A. “Management of COPD Exacerbation.” Am Fam Physician 2010, 81(5): 607-13.

Faculty Reviewer: Dr. Siket

Source Articles:

Brochard, L. Mancebo, J. Wtsocki, M. et al. “Noninvasive Ventilation for Acute Exacerbations of Chronic Obstructive Pulmonary Disease.” NEJM 1995, 333(13):817-22.

Perusing the Literature: Skin Glue for Peripheral IV Securement

This month we continue our Perusing of the Literature. Once again, this section consists of recent articles that residents and attendings have stumbled across that have raised an eyebrow. These posts are meant to spark a discussion and do not represent a change in the standard of care (unless otherwise noted).

The Article: Bugden S, et al. Skin Glue Reduces the Failure Rate of Emergency Department-Inserted Peripheral Intravenous Catheters: A Randomized Controlled Trial. Ann Emerg Med. 2016;1-6.

The One-Liner: Skin glue, in addition to standard care securement, may reduce peripheral intravenous catheter failure rates at 48 hours for admitted patients after insertion in the ED.

 Background: Frequently initiated in the ED setting, peripheral intravenous (IV) catheters may fail with inadequate fixation serving as the underlying etiology in infection, phlebitis, occlusion, or dislodgement. Failure disrupts hydration, antibiotic therapy, and analgesia for the patient, and incurs the added costs of additional supplies and staff time. In comparison to standard polyurethane dressings, medical-grade skin glue (cyanoacrylate) in addition to a dressing has been proven to be more effective in securing central venous, epidural, and peripheral arterial catheters. As peripheral IVs are administered on such a wide scale, a small increase in efficacy has the potential for great improvements in cost and patient satisfaction.

Methods: This was a single-site, 2-arm, nonblinded, randomized, controlled trial over a 5 month period. Patients were screened for inclusion after being identified as requiring hospital admission and having a patent upper limb peripheral IV. Patients were randomized to standard peripheral IV catheter securement (Tegaderm IV; Figure 1) or standard securement plus the addition of skin glue (single-use Histoacryl; Figure 2). The skin glue group received 1 drop of cyanoacrylate glue at the IV skin insertion site and 1 drop under the IV catheter hub (Video 1). The dressing was applied after allowing the glue to dry for <30 seconds. The primary outcome was peripheral IV catheter failure at 48 hours, defined by infection, phlebitis, occlusion, or dislodgement. Outcomes were assessed by RNs in person or by telephone, if no longer hospitalized. Intention to treat analysis was performed. Definitions for failure are described below:

  • Infection – clinical impression of cellulitis or pus at IV site.
  • Phlebitis – 2 or more symptoms of pain, redness, swelling, or palpable venous cord.
  • Occlusion – inability to flush 10 mL of 0.9% saline solution or history of IV catheter removed because ‘it was not working’.
  • Dislodgement – subcutaneous extravasation or history of ‘IV fell out’.

Figure 1

Figure 1: Standard of care – securement with transparent polyurethane dressing

Figure 2

Figure 2: Skin glue group – securement with 1 drop to skin insertion site and 1 drop under IV catheter hub

Video 1: Skin glue application for securement.


  • 380 peripheral IVs inserted into 360 adult patients
  • Some differences between standard and skin glue groups- insertion sites were different between groups, which could make big difference in dislodgement rates.
  • 1° outcome: Peripheral IV failure – 17% in skin glue group, 27% in standard care group; D = -10%, 95% CI -18% to -2%, p=0.02)
  • 2° outcome: Peripheral IV failure by dislodgement – 7% in skin glue group, 14% in standard care group; D = -7%, 95% CI -13% to 0%)


  • Blinding impossible due to glue color
  • Single site, question of external validity
  • Question of generalizability as different IV insertion practices are possible (for example, almost 74% of IVs in study were inserted by physicians- can we generalize this to our hospital?)
  • It is unclear if randomization really worked given differences between standard and skin glue groups. Additionally, many potential confounders were not included or reported including BMI, co-morbidities such as end-stage renal disease, or recent ED visits/ hospitalizations with IV placement.
  • Is 48 hours an important time point for ED patients? Maybe future study should consider IV failure in ED.
  • Outcome assessment occurred by telephone, and not direct visualization by research RN, for 209 (58%) patients discharged prior to 48 hour reassessment: This is a very significant limitation as assessing IV failure via phone could lead to underreporting of failures. Authors could have considered performing a sensitivity analysis to address this.
  • Many IVs removed prior to 48 hours, therefore observed failure rates may not be accurate for 48 hours dwell time
  • No cost analysis

Author: Cameron Gettel, MD PGY1
Resident Section Editor: Adam Janicki, MD PGY4
Reviewed by Tracy Madsen, MD, ScM, Assistant Professor, Department of Emergency Medicine

Hold the Fluids: Rethinking Early Crystalloid Resuscitation in Penetrating Trauma

By: Dr. Maddie Boyle

This is part of a recurring series examining landmark articles in Emergency Medicine, in the style of ALiEM’s 52 Articles.

This blog post reviews the article by: Bickell WH, et al. Immediate Versus Delayed Fluid Resuscitation for Hypotensive Patients with Penetrating Torso Injuries. NEJM. 1994; 331 (17): 1105 – 1109.

Main Points:

  1. Early, large volume crystalloid resuscitation in the trauma patient with penetrating wounds and hypotension may lead to hydraulic disruption of a formed clot and a dilutional coagulopathy, thereby exacerbating hemorrhage and decreasing survival.
  1. Restricting isotonic fluids in the penetrating trauma patient with hypotension prior to operative intervention (where definitive hemorrhage control can be achieved) lead to higher survival rates when compared to those individuals treated with early, aggressive isotonic fluid resuscitation (70% vs 62%, p=0.04). This paper suggests a potential adverse effect from aggressive crystalloid administration and emphasizes the importance of prioritizing surgical management in the patient with hemorrhagic shock from penetrating trauma.


Historically, the standard approach for the trauma patient with hypotension has been aggressive volume resuscitation with crystalloid fluids in order to restore circulating volume and maintain organ perfusion. More recent studies suggest that aggressive crystalloid fluid administration prior to definitive hemorrhage control may be detrimental. Aggressive fluids in the bleeding patient may be deleterious for multiple reasons, most notably the risk of dislodging a softly form clot at the injury site with restoration of blood pressure and the risk of increased bleeding secondary to dilution of clotting factors when large volumes of crystalloid fluids are infused. Recent literature such as the PROPPR trial has investigated colloid based transfusion strategies, however, this study predates the data gathered from the recent Iraq and Afghanistan Wars.

The goal of this study was to evaluate fluid administration in hypotensive patients with penetrating torso trauma and determine whether delayed fluid-resuscitation (after operative intervention), compared to an early fluid administration conferred a survival benefit. Researchers performed a prospective, single center trial comparing immediate fluid resuscitation vs. delayed fluid resuscitation in patients with penetrating torso trauma with a pre-hospital systolic BP <90 mmHg requiring operative intervention for hemorrhage control. The study found a mortality benefit favoring delayed resuscitation: 70% of patients enrolled in the delayed-resuscitation group survived vs. 62% of patients in the immediate-resuscitation group (p=0.04). This study highlights numerous important questions regarding fluid strategy in the trauma patients, including the type of resuscitative fluid, the volume and timing of fluid administration. The results of this investigation continued to be queried today as research examines permissive hypotension and damage control resuscitation strategies in the trauma patient.


1: Adequate power.
2: Intention-to-treat analysis.


1: Semi-randomized, non-blinded.
2: Generalizability: Study population was largely young, healthy adult males.
3: Feasibility: The average time elapsed from ambulance call to operative intervention was approximately 2-hours for each study group. This type of rapid response and expedited time to operative intervention may not be attainable by many hospitals.
4: External validity: study cannot be applied to patients with blunt trauma, traumatic brain injury (where fluid resuscitation to achieve blood pressure control is paramount) or in those penetrating trauma patients with delayed presentation.
5: No mention of neurologic outcome with regards to survival benefit.


Prospective, single-center trial.

Population: Adults or adolescents (age ≥16 years) with gunshot or stab wounds to the torso who had a SBP ≤ 90 mm Hg in the field, including those patients with no blood pressure at the time of initial paramedic evaluation.

Patients were separated into two treatment groups based on the day of the month. Patients injured on even-numbered days were assigned to the immediate-resuscitation group, whereas those injured on odd-numbered days were treated in the delayed-resuscitation group. Patients in the immediate-resuscitation group received isotonic crystalloid (ringer’s acetate) en route, and those with SBP <100 mm Hg upon arrival in the ED received continuous infusion of crystalloid or pRBCs when necessary as determined by standards established by the American College of Surgeons Committee on Trauma. The delayed-resuscitation group did not receive fluids, regardless of clinical condition, outside of those small infusions required to keep lines patent. Otherwise, the two treatment groups were treated identically in terms of pre-hospital and trauma care. The average time from emergency dispatch to surgical intervention was approximately 130 minutes in both groups.

Surgical interventions were dictated by the injury and included thoracotomy within the ED, thoracotomy in the OR, laparotomy, neck exploration, and groin exploration. During surgical intervention, IV crystalloid and pRBCs were given as needed, independent of study group assignment in order to maintain SBP of 100 mm Hg, hematocrit ≥ 25% and urinary output ≥ 50 cc/hr in both treatment groups. The total volume of crystalloid and colloid fluids provided in the OR was not statistically different between the two study arms, however, the rate of intraoperative fluid administration was noted to be 117 +/- 126 for the immediate resuscitation group and 91+/- 88 for the delayed resuscitation group with a p value of 0.008.

The primary outcome measure was survival, defined as patients who did not die during hospitalization. Secondary outcome measures included six prospectively identified post-operative complications including: sepsis, coagulopathy, acute renal failure, ARDS, pneumonia and wound infection.

598 patients were ultimately considered for the study. 309 were enrolled in the immediate-resuscitation group and 289 in the delayed-resuscitation group. The patients were similar in their baseline demographics and clinical condition. Of the 598 patients, 70 died before operative intervention. The remaining 528 had an operative intervention: 260 patients in the delayed-resuscitation group and 268 patients in the immediate-resuscitation group.

The mean fluid administration prior to operative intervention in the immediate-resuscitation group was 2611 ml. The mean fluid administration prior to operative intervention in the delayed-resuscitation group was 386 ml.

The overall rate of survival was higher in the delayed-resuscitation group vs. immediate-resuscitation (70% vs 62%, p-0.04). The immediate-resuscitation group trended towards more intraoperative fluid loss (p=0.11) and required a higher rate of intraoperative fluid delivery in order to maintain SBP >100 (117 cc/hr vs. 91 cc/hr, p=0.008). There was a trend towards more complications (ARDs, pneumonia, etc.) in the immediate-resuscitation group compared to the delayed-resuscitation group (p-0.08), however, no definitive explanation for why this may have occurred was discussed.

The authors of this study propose that their results suggest that aggressive fluid administration in the patient with penetrating trauma should be delayed until the time of operative intervention. They suggest a risk for greater bleeding, hemodilution and coagulopathy with aggressive fluid administration. The authors acknowledge the limitations of their study, most importantly its inapplicability to blunt trauma patients and patients with severe head injuries, but advise similar studies in these groups in the future.

Level of Evidence:

Class II utilizing the ACEP grading scheme for therapeutic questions

Relevant articles:

Timing and volume of fluid administration for patients with bleeding
Hypotensive resuscitation strategy reduces transfusion requirements and severe postoperative coagulopathy in trauma patients with hemorrhagic shock: preliminary results of a randomized controlled trial.
PROPPR trial

Source Article:

Bickell WH, et al. Immediate Versus Delayed Fluid Resuscitation for Hypotensive Patients with Penetrating Torso Injuries. NEJM 1994; 331 (17): 1105 – 1109.


Resident Reviewer: Dr. Anatoly Kazakin
Faculty Reviewer: Dr. Matt Siket

CITW 14: The Blue Man

Welcome back to another Clinical Image of the Week from the case files of the Brown EM Residency!

HPI/ROS: 57 year old male with a history of bacterial endocarditis and hypertension presents to the ED for watery diarrhea. He reports gradually worsening diarrhea over the past three weeks after starting HIV post-exposure prophylaxis medications. He does not recall the names of the medications. He’s tried Imodium without relief. Associated symptoms include shortness of breath, nausea, and dizziness. Denies fevers, chills, chest pain, vomiting, abdominal pain, urinary symptoms, rashes, or swelling. He endorses recent antibiotic use for a sinus infection, but denies recent hospitalizations and other recent medication changes. He also endorses recent ETOH use, but denies illicit drug use.

Vital Signs: T 97.1, HR 114, RR 18, BP 121/75, SpO2 89% on RA

Pertinent physical exam: Ill appearing and diaphoretic. There is perioral and digital cyanosis (see below). 3/4 systolic heart murmur (chronic). Abdomen soft, non-tender. Lungs clear to auscultation. No other pertinent exam findings.

Cyanosis Pre
mage 1: Provider’s hand on the left, patient’s hand on the right. 

The patient was put on 100% O2 by non-rebreather and his SpO2 improved to only 90%.

What’s the diagnosis?

Continue reading

Ottawa Ankle Rules

This is part of a recurring series examining landmark articles in Emergency Medicine, in the style of ALiEM’s 52 Articles.

Discussing:  Stiell IG, et al. Decision Rules for the Use of Radiography in Acute Ankle Injuries. JAMA 1993; 269 (9): 1127 – 1132.

 X-Rays for ankle fractures? Is trouble a foot?

With a such a refined Canadian tool you can’t act like a fool.

 The Rules:

Ottawa Ankle

Main Points:

  1. The Ottawa ankle rule is an excellent screening tool for patients with ankle and foot injuries. In this study, it was found to have a sensitivity of 100 percent and is therefore unlikely to miss clinically significant ankle and midfoot injuries.
  2. These simple rules allowed physicians to safely reduce the number of radiographs ordered in patients with ankle and foot injuries by nearly a third.
  3. Based on the combined 1485 patients seen in the two stages the negative likelihood ratio for a fracture is estimated to be 0 for both the ankle and foot series rules!


Acute ankle injuries are one of the most common presenting complaints seen in the Emergency Department. Ankle radiographs are typically the second most commonly performed musculoskeletal examination, after the cervical spine. It was estimated that more than 5 million ankle radiographs are ordered annually in Canada and the USA with a cost of $500 creating a massive burden on the healthcare systems. Out of all of these images, treatable fractures are present in less than 15 percent of cases.

In 1992, Ian Stiell and his colleagues derived a clinical decision tool for the use of radiography in acute ankle and foot injuries. In the original study, thirty-two clinical variables were assessed for association with fractures seen on x-ray. Using these results, a set of rules were derived to determine if imaging was necessary for patients with ankle and foot injuries who met certain criteria. The goal of the study being reviewed here was to prospectively validate and potentially refine the decision rules to have the highest sensitivity possible, 100 percent, for identifying malleoli and midfoot fractures.


The study was set up as a convenience survey and was prospectively administered in two stages: validation and refinement of the original rules, followed by validation of the refined rules in a new group of patients. For the study, injuries were subdivided into malleolar and midfoot zones. Patients who presented to the emergency department with pain or tenderness secondary to blunt ankle trauma due to any mechanism of injury were included. Patients were excluded if they were less than 18 years old, pregnant, has isolated skin injuries, were referred from outside facility with X-rays already completed, if injuries occurred more than 10 days ago, or if the patient had returned for reassessment of the injury.

Participants were evaluated by emergency medicine physicians who recorded their findings and interpretation of the decision rules on a standardized data collection sheet. All patients were then referred for radiography. Images were interpreted by radiologists who were blinded to the findings of the physician in the ED. Clinically significant fractures were defined as bone fragments greater than 3 mm in breadth, as avulsion fractures of 3 mm or less are not treated with plaster immobilization in the institutions involved in the study.

Data collected from the first stage was analyzed in order to refine the decision rules towards the objective of a sensitivity of 1.0. Each of the clinical variables were assessed for association with significant fractures in the ankle and foot radiographs. In the second stage, the sensitivity and specificity of the refined decision rules (see image above) was calculated and the accuracy and reliability of the physicians’ interpretation of the rules was determined. Continue reading

The Central Line Part 2: Technique & Procedural Steps

a blog series on emergency medicine procedures

In the last post (the central line part 1) we focused on the indications/contraindications and anatomic considerations. Here we focus on technique and procedural steps. Enjoy. 



*note: images shown in this section are institution-specific (Rhode Island Hospital Emergency Department) 

Find a computer with a functioning Topaz to obtain informed consent:

This slideshow requires JavaScript.

Go to this corner in any critical care room (here is a closer look) and obtain a central line kit:


Finally, obtain these items:

  • mayo stand
  • sterile gloves
  • chlorhexidine scrub
  • 2-3 sterile saline flushes
  • non-sterile marking pen
  • ultrasound machine and ultrasound probe cover
  • in kit: hat, gown, facemask




  • Open kit and empty sterile contents onto the field
    • Plug in ultrasound machine. It WILL run out of battery if you don’t and the screen will shut off in the middle of the procedure
    • Test your US probe orientation: tap gently on left side of probe…this should match left side of your screen
    • Examine the target vein: is it compressible? Is it plump and easily visualized?
    • Position the patient
    • Scrub target area with chlorhexidine
    • Mark the site


…and document it:

This slideshow requires JavaScript.


Watch this video. 

From, Scott Weingart, RACC Sterile Line Preparation

Continue reading

Time to Abandon Epinephrine for OHCA?

This is part of a recurring series examining landmark articles in Emergency Medicine, in the style of ALiEM’s 52 Articles.

Discussing: Wenzel, K. et al. A comparison of vasopressin and epinephrine for out-of-hospital cardiopulmonary resuscitation. N Engl J Med 2004;350(2):105-113.

Main Points:

  1. For out-of-hospital cardiac arrest (OHCA), vasopressin was similar to epinephrine in patients with ventricular fibrillation or pulseless electrical activity, with regards to survival to hospital admission and survival to hospital discharge. Vasopressin was noted to be superior, in both outcomes, for patients with asystole.
  1. In patients with refractory cardiac arrest and no ROSC, vasopressin followed by epinephrine may be more effective than epinephrine alone.


With more than 600,000 sudden death in North America and Europe annually, optimization of CPR is crucial to improve a patient’s chance of survival. Epinephrine use has become controversial as it induces increased myocardial consumption and ventricular arrhythmias post-resuscitation. Endogenous vasopressin levels have been known to be elevated in successfully resuscitated patients. In small prior studies, vasopressin has been associated with higher rate of short term survival and improved blood flow to vital organs when compared to epinephrine. Current guidelines recommend the use of epinephrine during cardiac resuscitation, with vasopressin as a secondary alternative.


This study was a double-blind, prospective randomized clinical trial, conducted in 44 Emergency Medical Service units in three European countries, including those with OHCA unresponsive to defibrillation. 1186/1219 patients with OHCA were included in the trial with randomization to two injections of either 40 IU of vasopressin or 1 mg epinephrine, followed by additional treatment with epinephrine at the discretion of the emergency physician managing the resuscitation. Average age 66 years, 70% men, 61% attributed to cardiac causes, 78% arrests witnessed. 33 patients were excluded due to a missing study drug code. The rates of hospital admission were similar between the two treatment groups for patients with ventricular fibrillation (46.2 vs 43%, p=0.48) and pulseless electrical activity (33.7 vs 30.5%, p=0.65). Patients with asystole treated with vasopressin were more likely to survive to hospital admission (29.0 vs 20.3%, p=0.02) and hospital discharge (4.7 vs 1.5%, p=0.04). Among 732 patients without ROSC, additional treatment with epinephrine resulted in improvement in rates of survival to hospital admission (25.7 vs 16.4%, p=0.002) and discharge (6.2 vs 1.7%, p=0.002) in the vasopressin group, but not the epinephrine group. Continue reading