Hold the Fluids: Rethinking Early Crystalloid Resuscitation in Penetrating Trauma

By: Dr. Maddie Boyle

This is part of a recurring series examining landmark articles in Emergency Medicine, in the style of ALiEM’s 52 Articles.

This blog post reviews the article by: Bickell WH, et al. Immediate Versus Delayed Fluid Resuscitation for Hypotensive Patients with Penetrating Torso Injuries. NEJM. 1994; 331 (17): 1105 – 1109.

Main Points:

  1. Early, large volume crystalloid resuscitation in the trauma patient with penetrating wounds and hypotension may lead to hydraulic disruption of a formed clot and a dilutional coagulopathy, thereby exacerbating hemorrhage and decreasing survival.
  1. Restricting isotonic fluids in the penetrating trauma patient with hypotension prior to operative intervention (where definitive hemorrhage control can be achieved) lead to higher survival rates when compared to those individuals treated with early, aggressive isotonic fluid resuscitation (70% vs 62%, p=0.04). This paper suggests a potential adverse effect from aggressive crystalloid administration and emphasizes the importance of prioritizing surgical management in the patient with hemorrhagic shock from penetrating trauma.


Historically, the standard approach for the trauma patient with hypotension has been aggressive volume resuscitation with crystalloid fluids in order to restore circulating volume and maintain organ perfusion. More recent studies suggest that aggressive crystalloid fluid administration prior to definitive hemorrhage control may be detrimental. Aggressive fluids in the bleeding patient may be deleterious for multiple reasons, most notably the risk of dislodging a softly form clot at the injury site with restoration of blood pressure and the risk of increased bleeding secondary to dilution of clotting factors when large volumes of crystalloid fluids are infused. Recent literature such as the PROPPR trial has investigated colloid based transfusion strategies, however, this study predates the data gathered from the recent Iraq and Afghanistan Wars.

The goal of this study was to evaluate fluid administration in hypotensive patients with penetrating torso trauma and determine whether delayed fluid-resuscitation (after operative intervention), compared to an early fluid administration conferred a survival benefit. Researchers performed a prospective, single center trial comparing immediate fluid resuscitation vs. delayed fluid resuscitation in patients with penetrating torso trauma with a pre-hospital systolic BP <90 mmHg requiring operative intervention for hemorrhage control. The study found a mortality benefit favoring delayed resuscitation: 70% of patients enrolled in the delayed-resuscitation group survived vs. 62% of patients in the immediate-resuscitation group (p=0.04). This study highlights numerous important questions regarding fluid strategy in the trauma patients, including the type of resuscitative fluid, the volume and timing of fluid administration. The results of this investigation continued to be queried today as research examines permissive hypotension and damage control resuscitation strategies in the trauma patient.


1: Adequate power.
2: Intention-to-treat analysis.


1: Semi-randomized, non-blinded.
2: Generalizability: Study population was largely young, healthy adult males.
3: Feasibility: The average time elapsed from ambulance call to operative intervention was approximately 2-hours for each study group. This type of rapid response and expedited time to operative intervention may not be attainable by many hospitals.
4: External validity: study cannot be applied to patients with blunt trauma, traumatic brain injury (where fluid resuscitation to achieve blood pressure control is paramount) or in those penetrating trauma patients with delayed presentation.
5: No mention of neurologic outcome with regards to survival benefit.


Prospective, single-center trial.

Population: Adults or adolescents (age ≥16 years) with gunshot or stab wounds to the torso who had a SBP ≤ 90 mm Hg in the field, including those patients with no blood pressure at the time of initial paramedic evaluation.

Patients were separated into two treatment groups based on the day of the month. Patients injured on even-numbered days were assigned to the immediate-resuscitation group, whereas those injured on odd-numbered days were treated in the delayed-resuscitation group. Patients in the immediate-resuscitation group received isotonic crystalloid (ringer’s acetate) en route, and those with SBP <100 mm Hg upon arrival in the ED received continuous infusion of crystalloid or pRBCs when necessary as determined by standards established by the American College of Surgeons Committee on Trauma. The delayed-resuscitation group did not receive fluids, regardless of clinical condition, outside of those small infusions required to keep lines patent. Otherwise, the two treatment groups were treated identically in terms of pre-hospital and trauma care. The average time from emergency dispatch to surgical intervention was approximately 130 minutes in both groups.

Surgical interventions were dictated by the injury and included thoracotomy within the ED, thoracotomy in the OR, laparotomy, neck exploration, and groin exploration. During surgical intervention, IV crystalloid and pRBCs were given as needed, independent of study group assignment in order to maintain SBP of 100 mm Hg, hematocrit ≥ 25% and urinary output ≥ 50 cc/hr in both treatment groups. The total volume of crystalloid and colloid fluids provided in the OR was not statistically different between the two study arms, however, the rate of intraoperative fluid administration was noted to be 117 +/- 126 for the immediate resuscitation group and 91+/- 88 for the delayed resuscitation group with a p value of 0.008.

The primary outcome measure was survival, defined as patients who did not die during hospitalization. Secondary outcome measures included six prospectively identified post-operative complications including: sepsis, coagulopathy, acute renal failure, ARDS, pneumonia and wound infection.

598 patients were ultimately considered for the study. 309 were enrolled in the immediate-resuscitation group and 289 in the delayed-resuscitation group. The patients were similar in their baseline demographics and clinical condition. Of the 598 patients, 70 died before operative intervention. The remaining 528 had an operative intervention: 260 patients in the delayed-resuscitation group and 268 patients in the immediate-resuscitation group.

The mean fluid administration prior to operative intervention in the immediate-resuscitation group was 2611 ml. The mean fluid administration prior to operative intervention in the delayed-resuscitation group was 386 ml.

The overall rate of survival was higher in the delayed-resuscitation group vs. immediate-resuscitation (70% vs 62%, p-0.04). The immediate-resuscitation group trended towards more intraoperative fluid loss (p=0.11) and required a higher rate of intraoperative fluid delivery in order to maintain SBP >100 (117 cc/hr vs. 91 cc/hr, p=0.008). There was a trend towards more complications (ARDs, pneumonia, etc.) in the immediate-resuscitation group compared to the delayed-resuscitation group (p-0.08), however, no definitive explanation for why this may have occurred was discussed.

The authors of this study propose that their results suggest that aggressive fluid administration in the patient with penetrating trauma should be delayed until the time of operative intervention. They suggest a risk for greater bleeding, hemodilution and coagulopathy with aggressive fluid administration. The authors acknowledge the limitations of their study, most importantly its inapplicability to blunt trauma patients and patients with severe head injuries, but advise similar studies in these groups in the future.

Level of Evidence:

Class II utilizing the ACEP grading scheme for therapeutic questions

Relevant articles:

Timing and volume of fluid administration for patients with bleeding
Hypotensive resuscitation strategy reduces transfusion requirements and severe postoperative coagulopathy in trauma patients with hemorrhagic shock: preliminary results of a randomized controlled trial.
PROPPR trial

Source Article:

Bickell WH, et al. Immediate Versus Delayed Fluid Resuscitation for Hypotensive Patients with Penetrating Torso Injuries. NEJM 1994; 331 (17): 1105 – 1109.


Resident Reviewer: Dr. Anatoly Kazakin
Faculty Reviewer: Dr. Matt Siket

Knee Dislocations: High risk, can’t miss!

By: Dr. Maddie Boyle


A 19-year-old male presents with left knee pain. He injured his knee yesterday while wrestling with friends and was seen in a local ED where his knee was reduced. He was discharged in a knee immobilizer and now returns with complaints of increasing pain and recurrent deformity after removing the immobilizer to shower.


Imaging demonstrates lateral tibiofemoral subluxation. He has a normal neurovascular exam, including strong distal pulses. Orthopedics is consulted and performs closed reduction of his knee. His ABI is subsequently measured at 0.92, and the knee is immobilized in 20° of flexion.


Image 1

Image 2


What would you do next?

(a) Call an emergency Vascular Surgery consult
(b) Admit for serial physical exams and ABI measurements
(c) Obtain a CTA of the lower extremity
(d) Discharge home in a knee immobilizer with outpatient Orthopedic follow-up
Continue reading