Slicing the network

In a previous post I described an idea on how to triangulate on the orientation of the Brown Space Engineering (BSE) satellite EQUiSat using simultaneous observations from multiple SatNOGS ground stations. We’re running simulation software to model how the antenna beam might be changing orientation as the spacecraft spins. The gyroscope is reporting about 7 degrees per second around one axis. This seems very fast and we’re not sure if the readings are accurate. This initial modeling assumes they are correct.

In the figures below the antenna beam is shown by a torus surrounding the satellite. The pattern is projected to the ground as rainbow colored lines. The red lines are the center of the beam. This does not show how signal strength varies on the surface. We’ll get to that later. It is merely projecting the geometry of a dipole antenna to illustrate where the center of the beam could be and how it might be rotating as the spacecraft spins.

Triangulation

Brown Space Engineering has started to participate in the Satellite Networked Open Ground Station (SatNOGS) project. Numerous radio receivers around the world listen for transmissions from satellites and the observations are then automatically uploaded to their website. The recordings of these receptions tipped us off to a close approach with another satellite transmitting on a nearby frequency.

We scheduled observations of EQUiSat on multiple ground stations in the eastern United States during a pass a little after 1 AM local time on November 8th. The goal is to try to understand the orientation of the antenna (and also the entire spacecraft) by comparing signal strength when two or more stations hear the same packet. The simple 70 cm dipole antenna on the spacecraft is directional. The maximum signal strength is perpendicular to the wire. We might be able to infer how the antenna was oriented at that moment by looking at which stations missed hearing the packet or received a weak signal.

Close approach

We noticed a signal in a recording of transmissions from EQUiSat that had a very odd Doppler shift. It turned out that there was a second satellite above the horizon at the same time and it was transmitting on a similar frequency. SiriusSat-1 uses 435.57 MHz and EQUiSat uses 435.55 MHz. If the first satellite is Doppler shifted by -10 kHz and the second is +10 kHz the signals will overlap. To understand the potential for interference I examined the orbits of the two.

Both satellites were deployed from the International Space Station (ISS) during the summer. EQUiSat in mid July then SiriusSat-1 and SiriusSat-2 in mid August. Because of the similar deployment the two satellites are in nearly identical orbits. The inclination of the two orbital planes is within a few ten thousandths of a degree.