The amount of sunlight that a satellite receives during an orbit is critical to planning operations. In a prior post I examined the changing orientation of the orbital plane with respect to the Sun which is described by the beta angle. In another post I detailed the large uncertainty in tracking CubeSats that are simultaneously deployed. This uncertainty causes difficulty in calculating the beta angle from the early orbital elements and introduces error in predicting the number of hours of sunlight per day. It takes about 40 days for a group of CubeSats to spread apart enough that they can be individually tracked to generate orbital elements that have decent long term accuracy for predicting the beta angle.
One way to generate an early estimate of the beta angle and the amount of sunlight is to use the orbital elements for the International Space Station (ISS) from which the satellites were deployed. All of the CubeSats should have similar orbits that are very close to the ISS. There are some errors in using this method but it can be useful for a short while if care is taken in interpreting the results. This method has the advantage that calculations can be done before deployment.
